Abstract
AbstractData from three micronetworks with eddy correlation data and three additional micronetworks without eddy correlation data are analyzed to study the spatial variability of surface air temperature in complex terrain. A simple similarity relationship is constructed to relate the spatial variation of air temperature along the slope to the thermal forcing and mixing. Mixing is not included in present empirical formulations of the surface air temperature distribution in complex terrain. The development of surface temperature gradients along the slope, resulting from surface heating or cooling, is bounded by a maximum (or saturated) value, where a further increase of temperature gradients is restricted by redistribution of heat by thermally driven slope circulations. Although much of the spatial variation of the surface air temperature is governed by complex three-dimensionality and surface vegetation, a relatively simple relationship is able to account for much of the diurnal and day-to-day variation of the spatial distribution of air temperature. This relationship requires information on the surface heat flux and friction velocity over a reference surface. Required generalizations of the relationship are outlined before it can be applied to an arbitrary site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.