Abstract

Surface modification of metal alloys using laser has become a unique tool to reduce surface related failure mechanisms such as wear, corrosion, erosion or high temperature oxidation. Laser surface engineered (LSE) ceramic coatings have been proved to enhance surface properties of Al alloys such as hardness and wear resistance. This technique has been shown to be capable of producing a wide variety of interesting metallurgical microstructure in the coating as well as in the adjoining substrate. These microstructures provide novel properties, which cannot be produced by any conventional processing technique. In addition, these coatings are metallurgically bonded, thus providing a sound and adherent interface between the coating and the substrate. In this present investigation, laser surface engineering technique has been employed to deposit ceramic (TiC) coating on aluminum alloy substrate. TiC coating was deposited on two types of aluminum substrates, alloy 2024 and 6061 using an Nd-YAG laser beam. The effect of laser processing parameters, such as power intensity and speed on the thickness, microstructure and morphology of both the coating and the heat-affected zone have been evaluated using a scanning electron microscope (SEM). Results of experiments in this study show that by controlling the process parameters it is possible to produce varied microstructures according to the surface requirement of the application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.