Abstract

Downward seepage (suction) increases the mobility of the channel. In this study, experimental investigations were carried out to analyse the suction effect on stream power along the downstream side of the flume. It was observed that stream power has a major influence on the stability and mobility of the bed particles, due to suction. Stream power is found to be greater at the upstream side and lower at the downstream side. This reduces the increment in the mobility of the sand particles due to suction at the downstream side. Thus, there is more erosion at the upstream side than the downstream side. It was also found that the amount of deposition of sand particles at the downstream side, because of the high stream power at the upstream side, is greater than the amount of erosion of sand particles from the downstream side.

Highlights

  • A study of the effect of seepage flows on the detachment of particles from the bed and on further movement of the bed load is of great interest, since this problem is related to the solution of important practical engineering problems

  • A stable relationship between sediment transport and flow can, at best, only be expected in a situation where the mechanisms controlling sediment transport are dependent only on the rate of flow of water in the channel and on seepage occurring through the channel

  • It is felt that the ‘stream power concept’ is more appropriate for describing seepage-induced incipient motion in an alluvial channel

Read more

Summary

Introduction

A study of the effect of seepage flows on the detachment of particles from the bed and on further movement of the bed load is of great interest, since this problem is related to the solution of important practical engineering problems. Willets and Drossos (1975), Maclean (1991), Rao and Sitaram (1999) and Rao and Sreenivasulu (2009) suggest that suction increases bed material transport, whereas injection reduces sediment transport and increases particle stability, or does not aid in initiating their movement. As suction increases the bed material transport, it is felt that there is a need to assess the spatial behaviour of the downward seepage along the length of the channel, as this would be more beneficial for field engineers. Whether that position is defined in topologic, geometric or flow-regulated terms, the most striking element of fluvial change occurs in the downstream direction (Knighton, 1987; 1999)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.