Abstract
Let k be an uncountable algebraically closed field and let Y be a smooth projective k-variety which does not admit a decomposition of the diagonal. We prove that Y is not stably birational to a very general hypersurface of any given degree and dimension. We use this to study the variation of the stable birational types of Fano hypersurfaces over fields of arbitrary characteristic. This had been initiated by Shinder, whose method works in characteristic zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.