Abstract
We study compactifications of the moduli space of unordered points in the plane via variation of GIT-quotients of their corresponding Hilbert scheme. Our VGIT considers linearizations outside the ample cone and within the movable cone. For that purpose, we use the description of the Hilbert scheme as a Mori dream space, and the moduli interpretation of its birational models via Bridgeland stability. We determine the GIT walls associated with curvilinear zero-dimensional schemes, collinear points, and schemes supported on a smooth conic. For seven points, we study a compactification associated with an extremal ray of the movable cone, where stability behaves very differently from the Chow quotient. Lastly, a complete description for five points is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.