Abstract

PurposeSoil microorganisms are vital for soil ecosystems through bioconversion of soil nutrients and maintenance of soil fertility to promoting the growth and development of citrus. However, understanding of how different planting years affect the soil bacterial community structures as related to nutrient availability in citrus orchards is limited.MethodsHere, Illumina MiSeq technology was used to investigate changes in bacterial community structures with different ages of citrus orchards that were 2, 5, 10, 15, and 18 years old.ResultsThe data showed that (1) soil bacterial community structures changed over the different growth stages of citrus orchards. With the extension of plantation age, the microbial diversity of citrus orchards increased gradually so that it was highest in 10-year-old citrus plantations but then decreased where the diversity of 18-year-old citrus ages was significantly lower than that of 10 and 15-year-old ones. Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi were the four dominant phyla in soil of citrus orchards, accounting for 30.85%, 24.89%, 14.27%, and 14.05% of the total soil bacterial communities, respectively. (2) Soil bacterial community structures in different succession stages were affected by soil pH and nutrients, in particular available potassium (AK).ConclusionThis study advances the understanding of soil microbiota of orchards and their interactions related to environmental factors in citrus orchard, which will improve our ability to promote the function of soil bacteria, so as to improve soil pH and reduce potassium (K) fertilizer input and improve the fruit quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.