Abstract

In this paper, rain characteristics and slant path rain attenuation at 30 and 40 GHz using synthetic storm techniques over seven tropical locations in Nigeria have been presented. The technique can be used to predict the local first-order statistical rain attenuation to mitigate the severe fade experienced at higher frequency bands by employing local rainfall rate statistics. Three years rain rate data at seven tropical and equatorial locations in Nigeria were utilized for the purpose of this work. The predicted statistics are in good agreement with those obtained from the propagation beacon measurement (EUTELSAT W4/W7 satellite-12.245 GHz) It could be observed that at 99.99 % link availability over these locations, the fade margin of higher dB (74 and 81 dB) are required at 30 and 40 GHz frequency bands, respectively. When diurnal variation was observed for four time intervals: 00:00–06:00, 06:00–12:00, 12:00–18:00, and 18:00–24:00, there is a variation of the fade margin over the hours of the day. The overall results will be needed for an acceptable planning that can effectively reduce the fade margin to a very low value for an optimum data communication over the studied locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call