Abstract
While urban open spaces have been shrinking with the rapid urbanization, rooftop space use is an alternative solution to such problems. Rooftop thermal environment is a critical consideration under global warming and local warming. Although there have been studies on rooftop thermal environment, variation of rooftop thermal environment with roof typology has not been fully revealed to support rooftop space design. To fill this gap, a field experiment was conducted over green roof (GR), wooden roof (WR), and shaded roof (SR) in a temperate city of Kitakyushu, Japan. Environmental parameters such as solar radiation, air temperature, and relative humidity at different heights of these three roofs were recorded, to understand rooftop thermal environment and daily heat stress variation with rooftop types and the height above roof surface. The results indicate that WR had the highest diurnal near-surface temperature and the worst heat stress, where the near-surface heat stress could even reach the danger level. GR exhibited the lowest diurnal near-surface temperature and heat stress, where the heat stress was only under caution and almost safe condition. SR exhibited the lowest diurnal 1-m temperature and SR had the weakest heat stress, indicating the significance of installing shading devices for rooftop thermal environment improvement and heat stress alleviation. GR exhibited excellent performance in reducing air temperature and heat stress at the pedestrian level, where its worst heat stress was only in caution condition. Compared with that at 1-m height, moreover, 1-cm temperature and heat stress of WR and SR were generally higher, indicating that people may undergo worse heat stress when kneeling or sitting compared with upright activities. Moreover, GR suppressed near-surface heat stress due to its excellent cooling performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.