Abstract

Variations of titanium oxide films induced by osteoblast-like cells in a rat calvaria culture system and the influence of an H2O2 pretreatment have been investigated by using X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. For abraded titanium, the results revealed that phosphate and calcium ions may incorporate into the surface oxide film during the cell culture, forming a precipitate with a Ca/P ratio near that of hydroxyapatite. Oxidized carbon also was found in the surface layer, most likely precipitated hydroxylcarbonated apatite (HCA). The H2O2 pretreatment of titanium in a phosphate-buffered saline solution results in a 10-fold thickened porous oxide film and large amounts of surface hydroxyl groups as well as a certain amount of phosphate ions inside the oxide film. During the cell culture, the H2O2-treated titanium surface favors the ion incorporation and precipitation of the HCA-like compound, which probably is inlaid into the oxide film. Osteoblast-like cells on the H2O2-treated titanium showed a more active morphology during the initial stage compared with cells on abraded titanium. Moreover, bone-like nodule formation and mineralization appear to be related to the precipitation of the HCA-like compound on the surface. The results are discussed with respect to corrosion resistance, ion incorporation and precipitation of the HCA-like compound on the surface, osseointegration, and bioactivity of titanium implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.