Abstract
Nitrogen-doped graphene quantum dots (NGQDs) synthesized from a single glucosamine precursor are utilized to develop a novel UV photodetector. Optical properties of NGQDs can be altered with short- (254 nm), mid- (302 nm), and long-wave (365 nm) ultraviolet (UV) exposure leading to the reduction of absorption from deep to mid UV (200-320 nm) and enhancement above 320 nm. Significant quenching of blue and near-IR fluorescence accompanied by the dramatic increase of green/yellow emission of UV-treated NGQDs can be used as a potential UV-sensing mechanism. These emission changes are attributed to the reduction of functional groups detected by Fourier transformed infrared spectroscopy and free-radical-driven polymerization of the NGQDs increasing their average size from 4.70 to 11.20 nm at 60 min treatment. Due to strong UV absorption and sensitivity to UV irradiation, NGQDs developed in this work are utilized to fabricate UV photodetectors. Tested under long-/mid-/short-wave UV, these devices show high photoresponsivity (up to 0.59 A/W) and excellent photodetectivity (up to 1.03 × 1011 Jones) with highly characteristic wavelength-dependent reproducible response. This study suggests that the optical/structural properties of NGQDs can be controllably altered via different wavelength UV treatment leading us to fabricate NGQD-based novel UV photodetectors providing high responsivity and detectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.