Abstract

A wide-range control over multimodal pore systems in porous monoliths is a key technology for developing functional materials, as the favorable pore structures in different length scales are required to be tailored depending on their application fields. In the alkoxy-derived sol–gel systems of silica and organosilicates, the synthetic methodology of meso- and macroporous monoliths with tunable pore properties has been developed by combining the supramolecular self-assembly of a Pluronic surfactant and polymerization-induced phase-separation techniques. This strategy has been applied to the sol–gel process of phenolic resins, giving rise to the hierarchically porous polymer gels with ordered mesoporosity and the corresponding carbon monoliths after carbonization. However, the controllable size range has been limited so far. This study has explored the relationship between the starting composition and the bimodal pore properties in further detail aiming at a better control of pore properties in phenolic resins. The enlargement of mesopore size has been achieved, yet associated with broadening the mesopore size distribution and coarsening the macropore morphology, resulting in the particle aggregates. The systematical investigation also reveals that the addition of KCl can improve the micelle arrangement in macroframework and provide the narrower mesopore size distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call