Abstract

To achieve osteochondral regeneration utilizing transplantation of cartilage-lineage cells and adequate scaffolds, it is essential to characterize the behavior of transplanted cells in the repair process. The objectives of this study were to elucidate the survival of mesenchymal cells (MCs). In a polylactic acid (PLA) scaffold and assess the possibility of MC/PLA constructs for osteochondral repair. Bone marrow from mature male rabbits was cultured for 2 weeks, and fibroblast-like MCs, which contain mesenchymal stem cells (MSCs), were obtained. A cell/scaffold construct was prepared with one million MCs and a biodegradable PLA core using a rotator device. One week after culturing, the construct was transplanted into an osteochondral defect in the medial femoral condyle of female rabbits and the healing process examined histologically. To examine the survivability of transplanted MCs, the male-derived sex-determining region Y (SRY) gene was assessed as a marker of MCs in the defect by polymerase chain reaction (PCR). In the groups of defects without any treatment, and the transplantation of PLA without cells, the defects were not repaired with hyaline cartilage. The cartilaginous matrix by safranin O staining and type II collagen by immunohistochemical staining were recognized, however the PLA matrix was still present in the defects at 24 weeks after transplantation of the construct. During the time passage, transplanted MCs numbers decreased from 7.8 x 105 at 1 week, to 3.5 x 105 at 4 weeks, and to 3.8 x 104 at 12 weeks. Transplanted MCs were not detectable at 24 weeks. MCs contribute to the osteochondral repair expressing the cartilaginous matrix, however the number of MCs were decreasing with time (i.e. 24 weeks). These results could be essential for achieving cartilage regeneration by cell transplantation strategies with growth factors and/or gene therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call