Abstract
Lithodoid and paguroid crabs are morphologically assigned to the superfamilies Lithodoidea and Paguroidea, respectively. Molecular analyses, however, have revealed closer genetic proximity of the lithodoid crabs to the family Paguridae than to other families of Paguroidea, provoking a long debate. We investigated the length and nucleotide sequence variation of the nuclear ribosomal DNA internal transcribed spacer 1 (ITS1) in lithodoid and paguroid species. Uniquely short ITS1s (215–253 bp) were observed in seven lithodoid species. In contrast, ITS1 length varied considerably in 13 paguroid species belonging to the families Coenobitidae, Diogenidae, and Paguridae. Short-to-long ITS1s (238–1090 bp) were observed in five species of the family Paguridae, and medium to long ITS1s (573–1166 bp) were observed in eight species of the families Coenobitidae and Diogenidae. Considerably different size ITS1s coexisted in individual paguroid species. Nucleotide sequence analysis indicated that the short ITS1s observed in the family Paguridae were descendants of longer ITS1s and were homologous to the short ITS1 of lithodoid species. ITS1 sequences of the families Coenobitidae and Diogenidae shared no nucleotide elements with lithodoid and pagurid species. These molecular signals indicate that the short ITS1 in pagurid lineage was passed on to lithodoid lineage, strongly supporting the “hermit-to-king” crab hypothesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.