Abstract
Mesophyll structure and content of photosynthetic pigments in the leaves of three species of steppe plants, Centaurea scabiosa L., Euphorbia virgata Waldst. et Kit., Helichrysum arenarium (L.) Moench, were investigated in four geographical sites of the Volga region and the Urals located in the forest-steppe and steppe zones. Variations of the studied parameters between geographical points depended both on the species and on the structural organization of the leaf. The highest level of variation was observed for leaf area and pigment content per unit leaf area, the size and the number of chloroplasts in the cell changed to a lesser extent. The leaf thickness, leaf area and mesophyll cell sizes mostly depended on the plant species. C. scabiosa had large leaves (40–50 cm2) with large thickness (280–290 μm) and large mesophyll cells (up to 15000 μm3). The leaves of H. arenarium and E. virgata were ten times smaller and characterized by 1.5 times smaller thickness and 2−3 times smaller cell size. Geographical location and climate of the region affected leaf density, proportion of partial tissue volume, and the ratio of the photosynthetic pigments. In the southern point of Volga region with the highest climate aridity, all studied species were characterized by maximum values of volumetric leaf density (LD), due to the high proportion of sclerenchyma and vascular bundles, and specificity of the mesophyll structure. With the decline in latitude, chlorophyll (Chl) and carotenoid (Car) contents in leaf area were reduced, the ratio Chl/Car was increased, and the ratio Chl a/b was declined. The reduction of the pigment content in the leaf in all species was associated with a reduction in the amount of Chl per chloroplast, and for C. scabiosa and H. arenarium it was associated also with the reduction of chloroplast amount in the leaf area. In turn, chloroplast number per leaf area and the total cell area (Ames/A) depended on the ratio of the number and size of mesophyll cells inherent to this plant species. At the same time, we found a similar mechanism of spatial organization of leaf restructuring for all studied species—decrease in Ames/A was accompanied by increasing in the proportion of intercellular air spaces in the leaf. It is concluded that variations in structural and functional parameters of the photosynthetic apparatus of steppe plants were associated with plant adaptation to climate features. General direction of the changes of leaf parameters of the studied species with aridity was the increase of LD and the decrease of pigment content per leaf area however the cellular mechanisms of changes in the pigment content and integral parameters of mesophyll were determined by the plant species properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.