Abstract

Interfacial characteristics of metal oxide-silicon carbide (MOSiC) structure with different thickness of SiO2, thermally grown in steam ambient on Si-face of 4H-SiC (0 0 0 1) substrate were investigated. Variations in interface trapped level density (Dit) was systematically studied employing high-low (H-L) frequency C–V method. It was found that the distribution of Dit within the bandgap of 4H-SiC varied with oxide thickness. The calculated Dit value near the midgap of 4H-SiC remained almost stable for all oxide thicknesses in the range of 109–1010 cm−2 eV−1. The Dit near the conduction band edge had been found to be of the order of 1011 cm−2 eV−1 for thicker oxides and for thinner oxides Dit was found to be the range of 1010 cm−2 eV−1. The process had direct relevance in the fabrication of MOS-based device structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.