Abstract

Abstract We study the relationship between derived categories of factorizations on gauged Landau–Ginzburg models related by variations of the linearization in Geometric Invariant Theory. Under assumptions on the variation, we show the derived categories are comparable by semi-orthogonal decompositions and we completely describe all components appearing in these semi-orthogonal decompositions. We show how this general framework encompasses many well-known semi-orthogonal decompositions. We then proceed to give applications of this complete description. In this setting, we verify a question posed by Kawamata: we show that D-equivalence and K-equivalence coincide for such variations. The results are applied to obtain a simple inductive description of derived categories of coherent sheaves on projective toric Deligne–Mumford stacks. This recovers Kawamata’s theorem that all projective toric Deligne–Mumford stacks have full exceptional collections. Using similar methods, we prove that the Hassett moduli spaces of stable symmetrically-weighted rational curves also possess full exceptional collections. As a final application, we show how our results recover and extend Orlov’s σ-model/Landau–Ginzburg model correspondence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.