Abstract

Surrogate mixtures for modeling real fuels are formulated based on gaseous combustion property targets and liquid physical properties. A batch distillation model was developed to evaluate the vaporization characteristics of some existing surrogates for Jet-A. Chinese aviation fuel RP-3 was then used as a target to experimentally obtain distillation curves and variation of chemical functional groups. A 24-component surrogate was formulated mainly to capture the distillation behavior of RP-3. This surrogate was then used in two droplet vaporization models (Finite Thermal Conductivity/Finite Diffusivity (FTC/FD), Infinite Thermal Conductivity/Infinite Diffusivity (ITC/ID)) to investigate the effects of preferential vaporization on gaseous combustion properties of a complex real fuel. The results obtained from FTC/FD and ITC/ID provide regional bounds for droplets in a vaporizing spray. Four combustion property targets (Molecular Weight (MW), Hydrogen to Carbon ratio (H/C), Derived Cetane Number (DCN) and Threshold Sooting Index (TSI)) were employed as indicators of gas combustion properties. It was found that due to a wide distribution of compounds’ volatility, gaseous combustion properties vary significantly during droplet vaporization. The results suggest development of vaporization models that well capture preferential vaporization of a target real fuel for further spray modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.