Abstract

Frequency coupling in nervous system is believed to be associated with normal and impaired brain functions. However, most of the existing experiments have been concentrated on the coupling strength within frequency bands, while the coupling strength between different bands is ignored. In this work, we apply phase synchronization index (PSI) to investigate the cross-frequency coupling (CFC) of Electroencephalogram (EEG) signals. The PSI matrixes for the multi-channel EEG signals are calculated from interictal to ictal period in each sliding time window. The results show that CFC changes obviously once seizure occurs between the different bands, and such alteration is earlier than the appearance of clinical symptoms in seizure. Considering the similar role of the within-frequency coupling (WFC), we further reconstruct multi-layered brain networks, including CFC networks and WFC networks. The graph metrics are applied to investigate the variation of network structure of the epileptic brain. Significant decreases/increases of the local/global efficiency are found in δ-β, δ-α, θ-α and δ-θ bands from the CFC network, while WFC network shows a significant decline in the local efficiency in θ and α bands. These findings suggest that CFC may provide a new perspective to observe the alteration of brain structure when seizure occurs, and the investigation of functional connectivity across the full frequency spectrum can give us a deeper understanding of epileptic brains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.