Abstract

Trends in industry are leaning toward stereotyped jobs with low workloads. Physical variation is an intervention to reduce fatigue and potentially musculoskeletal disorders in such jobs. Controlled laboratory studies have provided some insight into the effectiveness of physical variation, but very few have been devoted to force variation without muscular rest as a component. This study was undertaken to determine multiple physiological responses to five isometric elbow extension protocols with the same mean amplitude (15% maximum voluntary contraction, MVC), cycle time (6 s), and duty cycle (50 %). Sustained (15 %Sus) and intermittent contractions including zero force (0-30 %Int) differed significantly in 19 of 27 response variables. Contractions varying by half the mean force (7.5-22.5 %Int) led to 8 and 7 measured responses that were significantly different from 0-30 %Int and 15 %Sus, respectively. A sinusoidal condition (0-30 %Sine) resulted in 2 variables that were significantly different from 0-30 %Int, and 16 different from 15 %Sus. Finally, ten response variables suggested that varying forces with 1 % as the lower contraction level was significantly less fatiguing than 15 %Sus, while no responses were significantly different from 0-30 %Int. Sustained contractions led to decreased twitch force 24-h post-exercise, whereas recovery was complete within 60 min after intermittent contractions. This suggests that time-varying force may be a useful intervention to reduce local fatigue in workers performing low-load tasks, and also that rest per se did not seem to cause any extraordinary effects beyond those predictable from the force variation amplitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call