Abstract

Three types of polypeptide surface area (contact, accessible, and molecular) have been studied as a function of the radius of a probe sphere used to map the surface. The surfaces are: (1) three alpha-helices, the H-helix of myoglobin, the E-helix of leghemoglobin, and an artificial polyalanine helix, each with 26 residues; (2) two globins, myoglobin and leghemoglobin, each with 153 residues; and (3) a two-center model system for which the three types of surface area have been calculated analytically. The two globin helices have almost identical surface areas as a function of probe size as do the two globins. The polyalanine helix surface area is smaller but similar in shape to the globin helix areas. All three helix contact areas tend to the same limit as the probe size increases, and the globin contact areas behave similarly. Fractal dimensions were calculated for the helix and globin contact and molecular surfaces. All fractal dimensions showed strong dependence on probe size. The contact fractal dimension peaks at larger values for both the helices and globins. Most residues do not make contact with large probes (15 A).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call