Abstract

Feammox is a newly discovered and important anaerobic nitrogen (N) loss pathway, and its variation and role in removing N following the application of N fertilizer and its migration from paddies to other land use types and from surface soils to deep soils have not been thoroughly elucidated to date. In this study, field sampling and slurry incubation experiments were performed to evaluate the Feammox rate between different land use types (paddy, irrigation ditch, riparian zone and lake, 0–10 cm) and different paddy soil depths (0–70 cm) in a wheat-rice rotation area in China. Based on a 15N-labelled isotope-tracing technique and analysis of microbial communities, it was estimated that the potential Feammox rate ranged from 0.031 to 0.42 mg N kg−1 d−1 in this area. In the soil profile of the paddy, the depth of 20–30 cm was the active region of Feammox, with a value of 0.37 ± 0.057 mg N kg−1 d−1. Compared with the surface soil (0–10 cm) of the paddy (0.18 ± 0.031 mg N kg−1 d−1), the potential Feammox rate of the irrigation ditch soil was not significantly different, but that of the lake riparian soil and lake sediment were decreased by 27.27% and 32.11%, respectively (p < 0.01). Fe(III) content was the best predictor of the Feammox rate and explained the variation of the Feammox rate by 36.00% in the surface soil. At the genus level, the paddy soil at a depth of 20–30 cm had the greatest abundance of the genera in which the Fe reduction bacteria were distributed; and where Bacillus, Geobacter and Anaeromyxobacter had higher proportions. It was estimated that the potential N loss by Feammox was in the range of 7.36 (the lake) ∼43.35 (the paddy) kg N ha−1 year−1 in the surface soil of this area. Considering denitrification and the Feammox rate as a whole, we found that denitrification remained to be the main contributor to N loss in the surface soil (94.72–96.89% of N loss), although Feammox dominated N loss in the deep soil (below 0–10 cm).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.