Abstract
We study the behavior of entanglement between different degrees of freedom of scattering fermions, based on an exemplary QED scattering process $e^+e^-\longrightarrow\mu^+\mu^-$. The variation of entanglement entropy between two fermions from an initial state to the final state was computed, with respect to different entanglement between the ingoing particles. This variation of entanglement entropy is found to be proportional to an area quantity, the total cross section. We also study the spin-momentum and helicity-momentum entanglements within one particle in the aforementioned scattering process. The calculations of the relevant variations of mutual information in the same inertial frame reveals that, for a maximally entangled initial state, the scattering between the particles does not affect the degree of both of these entanglements of one particle in the final state. It is also found that the increasing degree of entanglement between two ingoing particles would restrict the generation of entanglement between spin (helicity) and momentum of one outgoing particle. And the entanglement between spin and momentum within one particle in the final state is shown to always be stronger than that for helicity-momentum for a general initial entanglement state, implying significantly distinct properties of entanglement for the helicity and spin perceived by an inertial observer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.