Abstract

The study presents copper (Cu) isotope data of mineral separates of chalcopyrite from four drill core samples in the Miocene Dabu porphyry Cu-Mo deposit formed in a post-collisional setting in the Gangdese porphyry copper belt, southern Tibet. Copper isotope values in hypogene chalcopyrite range from –1.48‰ to +1.12‰, displaying a large variation of up to 2.60‰, which demonstrates Cu isotope fractionation at high-temperature during hydrothermal evolution. The majority of measured chalcopyrite isotopic compositions show a gradual increasing trend from –1.48‰ to +1.12‰ with the increase of drilling depth from 130m to 483m, as the alteration assemblages change from potassic to phyllic. Similarly, the other δ65Cu values (δ65Cu=((65Cu/63Cu)sample/(65Cu/63Cu)standard−1)×1000) of the chalcopyrite show a gradual increasing trend from −1.48‰ to +0.59‰ with the decrease of drilling depth from 130m to 57m, as the alteration assemblages change from potassic, phyllic, through argillic to relatively fresh. These observations suggest a genetic link between Cu isotope variation and silicate alteration assemblages formed at different temperatures, indicative of a Rayleigh precipitation process resulting in the large variation of δ65Cu values at Dabu. In general, samples closest to the center of hydrothermal system dominated by high-temperature potassic alteration are isotopically lighter, whereas samples dominated by low-temperature phyllic alteration peripheral to the center are isotopically heavier. The predicted flow pathways of hydrothermal fluids are from No. 0 to No. 3 exploration line, and the lightest δ65Cu values are the most proximal to the hydrothermal source. Finally, we propose that the northwest side of the No. 0 exploration line has high potential for hosting undiscovered orebodies. The pattern of Cu isotope variation in conjunction with the features of silicate alteration in porphyry system can be used to trace the hydrothermal flow direction and to guide mineral exploration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call