Abstract
The raw water distribution systems (RWDSs) play key roles in urban water supply systems. The changes of disinfection byproducts (DBPs) precursors of trihalomethanes (THMs), haloacetic acids (HAAs) and halogenated acetaldehydes (HALs) in the RWDS in Taihu Basin were investigated by formation potentials. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) method and 454-pyrosequencing were employed to study the variation of molecular characteristics of low molecular weight-dissolved organic matter (LMW-DOM) and microbial communities of pipeline biofilms respectively, which played crucial roles in the variation of DBPs precursors. The results showed that both DBPs precursors and the molecular characteristics of LMW-DOM in the RWDS had changed. Moreover, the LMW-DOM could be an indicator due to the good positive correlation with precursors of HAAs and HALs. Specifically, the LMW-DOM showed continuous accumulation in the RWDS. The LMW-DOM tended to possess higher m/z and more CH2 or long alkyl chains while pre-chlorination controlled this trend. The LMW-DOM in the pre-chlorinated pipe section also possessed higher saturation. Additionally, lignins served as an important part of DBPs precursors and dominated the LMW-DOM. The microbial diversity decreased in the RWDS, and the abundance and diversity of the microbial community in the pre-chlorinated section were significantly lower than those in the no-chlorinated section. Finally, most DBPs precursors had positive correlation with dominant phylum and genus in RWDS. This study reveals variation of DBPs precursors, LMW-DOM and microbial pipeline biofilms as well, and provide important data for further research on raw water safety and stability in RWDSs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.