Abstract

Throughout this work, the equations of variation of the isothermal bulk modulus, its first pressure derivative, and the volumetric thermal expansion coefficient as a function of pressure were derived based on the Birch–Murnaghan equation of state (B–M EOS). The bulk modulus and its first derivative at ambient temperature for nine elements were extracted by fitting the published experimental pressure–volume data to B–M EOS, and the results were compared with other published researches, and there was a good agreement. Moreover, those extracted values were used to study the variation of the isothermal bulk modulus, its first pressure derivative, and the isothermal coefficient of thermal expansion as a function of the applied hydrostatic pressure using the equations that were derived from this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.