Abstract

Magnesium aluminum layered double hydroxides (MgAl-LDHs) intercalated with a range of benzyl anions were prepared using the coprecipitation method. The benzyl anions differ in functionality (i.e. carboxylate, sulfonate, and phosphonate) and presence or absence of an amino substituent. Various methods for preparing LDHs (i.e. ion exchange, coprecipitation and rehydration of the calcined LDH methods) have been compared with the MgAl-benzene phosphonate and their effect on fire and thermal properties was studied. After characterization, the MgAl-LDHs were melt-blended with poly(methyl methacrylate) (PMMA) at loadings of 3 and 10% by weight to prepare composites. Characterization of the LDHs and the PMMA composites was performed using FTIR, XRD, TGA, transmission electron microscopy (TEM) and cone calorimetry. FTIR and XRD analyses confirmed the presence of the charge balancing benzyl anions in the galleries of the MgAl-LDHs. Improvements in fire and thermal properties of the PMMA composites were observed. The cone calorimeter revealed that the addition of 10% MgAl-LDHs reduces the peak heat release rate by more than 30%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.