Abstract
The use of megavoltage X-ray sources of radiation, with their skin-sparing qualities in radiation therapy, has been proved useful in relieving patient discomfort and allowing higher tumor doses to be given with fewer restrictions due to radiation effects in the skin. The purpose of this study was to compare the dosimetric characteristics of a physical and enhanced dynamic wedge from a dual-energy (6 and 18 MV) linear accelerator such as surfaces doses with different source to surface distances (SSD), half value layer (HVL) in water and peripheral doses for both available energies. At short SSD such as 85 cm, higher surface doses are produced by the lower wedges by the short wedge-to-skin distance. For physical wedged field, at heel edge side HVL value was high (17 cm) compared with the measured that of EDW (15.1 cm). It was noticed that, the HVL variation across the beam was significantly higher for 6 MV X-rays than for 18 MV X-rays. The lower wedge has the maximum variation of peripheral dose compared to other wedges. The three wedge systems discussed in this work possess vastly different dosimetric characteristics. These differences will have a direct impact on the choice of the wedge system to be used for a particular treatment. Complete knowledge of the dosimetric characterisitics, including the surface and peripheral doses, is crucial in proper choice of particular wedge systems in clinical use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.