Abstract
In this paper, X-ray diffraction (XRD), differential scanning calorimetry (DSC), broadband dielectric (BDS), and Fourier transform infrared (FTIR) spectroscopy supported by molecular dynamics (MD) simulations and quantum chemical computations were applied to investigate the structural and thermal properties, molecular dynamics, and H-bonding pattern of R-, S-, and RS-flurbiprofen (FLP). Experimental data indicated various spatial molecular arrangements in crystalline forms of examined systems, which seemed to disappear in the liquid state. Surprisingly, deeper analysis of high-pressure dielectric data revealed unexpected variation in the activation volume of pure enantiomers and a racemate. MD simulations showed that it is an effect of the clusterization phenomenon and a higher population of small associates in the former samples. Moreover, theoretical consideration exposed the particular role of unspecific F-Π interactions as a driving force underlying local molecular arrangements of molecules in the liquid and the crystal lattice of R-, S-, and RS-FLP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.