Abstract

Estimations of transition age (TA) and juvenile wood proportion (JWP) are important for wood industries due to their impact on end-product quality. However, the relationships between analytical determination of TA based on tracheid length (TL) and recognized thresholds for adequate end products have not yet been established. In this study, we used three different statistical models to estimate TA in white spruce (Picea glauca (Moench) Voss) based on TL radial variation. We compared the results with technological maturity. A two-millimeter threshold, previously suggested for good paper tear strength, was used. Tracheid length increased from pith to bark and from breast height to upper height. Juvenile wood (JW) was conical with the three models. At breast height, TA ranged from 11 to 27 years and JWP ranged from 15.3% to 47.5% across the three models. The linear mixed model produced more conservative estimates than the maximum-quadratic-linear (M_Q_L) model. Both the linear mixed model and the M_Q_L model produced more conservative TA estimates than the piecewise model. TA estimates by the MIXED model, and to a lesser extent by the M_Q_L model, were equivalent to those for real mature wood, whereas TA estimates by the piecewise model were considerably lower, falling into the transition wood area.

Highlights

  • White spruce (Picea glauca (Moench) Voss) is widely distributed across North America

  • tracheid length (TL) was shorter in juvenile wood (JW) compared to mature wood (MW)

  • We found a conical shape for JW using

Read more

Summary

Introduction

White spruce (Picea glauca (Moench) Voss) is widely distributed across North America. Compared to mature wood (MW), JW is composed of smaller, shorter tracheids with thinner walls, larger microfibril angles, larger spiral grain angles, lower tangential and higher longitudinal shrinkage, lower holocellulose and alpha cellulose content, higher lignin and hemicellulose content, and lower strength properties [3]. All these characteristics cause problems, including drying issues, warping, and low stiffness, which reduce the utility of JW, especially for the solid wood industry [3,4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call