Abstract

Variation in tolerance to Bacillus thuringiensis Berliner subsp. kurstaki (strain HD-1-S-1980) among and within populations of the spruce budworm, Choristoneura fumiferana (Clemens), was assessed in the laboratory. Force-feeding assays using offspring of females collected as pupae from nine locations throughout Ontario and from a laboratory colony (DCF) demonstrated limited variation in tolerance among populations. Variation among populations was comparable with the variation observed among repeated assays with different batches of larvae from the DCF colony. Population LC50s were not significantly associated with age of the outbreak, host-plant species, incidence of the microsporidian Nosema fumiferanae (Thomson), or size of the female parent. Upper limits for genetic variation in tolerance were estimated by examining variation among full-sibling families within same populations. Mortality of individual families ranged from 6.5 to 70.9% within five field populations and from 2.7 to 93.3% within two laboratory colonies in response to a dose that caused a mean mortality of 40%. Familial factors accounted for 32.8% of the phenotypic variation in response across field populations, as compared with 3% for population factors. These data suggest that the phenotypic variation in tolerance to B. thuringiensis has a substantial genetic component and may provide a basis for evolution of resistance given sufficient selection pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.