Abstract

The aim of the present work is to study the influence of the vibration temperature, frequency and amplitude on the structure of amorphous NiTi-based shape memory alloys. The Ti40.7Hf9.5Ni44.8Cu5, Ti40.7Hf9.5Ni41.8Cu8 and Ti50Ni25Cu25 melt-spun amorphous thin ribbons were subjected to low-frequency mechanical vibrations in a Dynamical Mechanical Analyser or ultrasonic vibrations in anvil. The results of the study have shown that the mechanical vibrations lead to a structural relaxation and initiate the beginning stage of the crystallisation in the amorphous NiTi-based shape memory alloys. During the vibrations with an amplitude of 4 μm, crystalline clusters, with a size of 4–6 nm, appear in the amorphous matrix. On an increase in the vibration temperature or frequency, the size of the crystalline clusters hardly changes. The clusters that form during the vibrations do not influence the crystallisation temperature but decrease the crystallisation enthalpy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.