Abstract

The social division of labor within the honeybee colony is closely related to the age of the bees, and the age structure is essential to the development and survival of the colony. Differences in tolerance to pesticides and other external stresses among worker bees of different ages may be related to their social division of labor and corresponding physiological states. Pyraclostrobin was widely used to control the fungal diseases of nectar and pollen plants, though it was not friend to honey bees and other pollinators. This work aimed to determine the effects of field recommended concentrations of pyraclostrobin on the activities of protective and detoxifying enzymes, on the expression of genes involved in nutrient metabolism, and immune response in worker bees of different ages determined to investigate the physiological and biochemical differences in sensitivity to pyraclostrobin among different age of worker bees. The result demonstrates that the tolerance of adult worker bees to pyraclostrobin was negatively correlated with their age, and the significantly reduced survival rate of forager bees (21 day-old) with continued fungicide exposure. The activities of protective enzymes (CAT and SOD) and detoxifying enzymes (CarE, GSTs and CYP450) in different ages of adult worker bees were significantly altered, indicating the physiological response and the regulatory capacity of worker bees of different ages to fungicide stress was variation. Compared with 1 and 8 day-old worker bees, the expression of nutrient-related genes (ilp1 and ilp2) and immunity-related genes (apidaecin and defensin1) in forager bees (21 day-old) was gradually downregulated with increasing pyraclostrobin concentrations. Moreover, the expression of vitellogenin and hymenoptaecin in forager bees (21 day-old) was also decreased in high concentration treatment groups (250 and 313 mg/L). The present study confirmed the findings of the chronic toxicity of pyraclostrobin on the physiology and biochemistry of worker bees of different ages, especially to forager bees (21 day-old). These results would provide important physiological and biochemical insight for better understanding the potential risks of pyraclostrobin on honeybees and other non-target pollinators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call