Abstract

BackgroundMagnolia officinalis Rehd. et Wils, commonly called Houpo, has been used for thousands of years in China as a traditional herbal medicine. The primary processing of Houpo requires sweating treatment, which is a special drying process and is considered to be an essential embodiment of high quality and genuine medicinal materials. The sweating of Houpo leads to peculiar changes in the microbial community structure and the content of main active substances (magnolol, honokiol, syringin and magnoflorine). Variation in the microbial community was considered the cause of the change in content of active substances of Houpo, although the microbial taxa responsible for the improvement of content remain unidentified.MethodsIn this study, we used MiSeq high-throughput sequencing methods for partial bacterial 16S rRNA and 18S rRNA gene sequences to compare the bacterial and fungal community structures at different timepoints in the process of sweating. The content of the main active substances (magnolol, honokiol, syringin and magnoflorine) were determined by high-performance liquid chromatography analysis to evaluate the effects of sweating. UPLC-Q-Extractive Orbitrap mass spectrometry (UPLC-QE Orbitrap MS) was used to detection of differential metabolites of unsweated Houpo before and after co-culture with core bacterial solutions.ResultsIn this study, the total contents of magnolol (MG) and honokiol (HK) were significantly increased at 4 dp (dp for day PM sample), up to 3.75%, and the contents of syringin (SG) and magnoflorine (MF) were as high as 0.12% and 0.06%, respectively. Bacterial abundance and diversity were higher in the early stage (0 day–2 da; da for day AM sample) than in the later stage (4–5 dp), while fungal abundance was more obvious in the later stage than in the early stage. Positive correlation coefficients revealed that the relative abundance of Enterobacter (P < 0.05), Klebsiella (P < 0.05), Weissella (P < 0.05), Bacillus (P < 0.05) and Candida (P < 0.05) would be conducive to improving the quality of Houpo. Negative correlation coefficients revealed that the relative abundance of Actinomycetospora, Singulisphaera, Mucilaginibacter, Deinococcus, Gemmatirosa, Methylobacterium, Sphingomonas, Hymenobacter, Halomonas and Capnobotryella could be a potential antagonist for the decrease in the quality of Houpo. After co-culture of single core strain and unsweated Houpo, there was no significant difference in the four main active components, but there were other metabolites with significant difference.ConclusionsOur findings reveal that sweating increased the content of the main active compounds, promoted the relative abundance of potentially beneficial microbes, decreased the abundance of potentially harmful microbes, the core functional genera group together, forming a core microbiome, these genera are dominant across the different stages of the sweating process and contribute to the quality development of the characteristics of Houpo. Meanwhile, this study presented a clear scope for potential beneficial microbes that improve the quality of Houpo.

Highlights

  • Magnolia officinalis Rehd. et Wils, commonly called Houpo, has been used for thousands of years in China as a traditional herbal medicine

  • Our findings reveal that sweating increased the content of the main active compounds, promoted the relative abundance of potentially beneficial microbes, decreased the abundance of potentially harmful microbes, the core functional genera group together, forming a core microbiome, these genera are dominant across the different stages of the sweating process and contribute to the quality development of the characteristics of Houpo

  • This study aims to provide the following: (i) the identification of the core population of the microbial community in the process of M. officinalis sweating, (ii) a better understanding of the relationship between microbial community activity and the quality of Houpo, and (iii) the primary processing of Traditional Chinese Medicinal Materials (TCMM) represented by M. officinalis and the role placed by microorganisms in the formation of the quality of medicinal materials

Read more

Summary

Introduction

Magnolia officinalis Rehd. et Wils, commonly called Houpo, has been used for thousands of years in China as a traditional herbal medicine. The primary processing of Houpo requires sweating treatment, which is a special drying process and is considered to be an essential embodiment of high quality and genuine medicinal materials. The primary processing of Traditional Chinese Medicinal Materials (TCMM) refers to the preliminary treatment and drying of medicinal materials from medicinal plants to form commercial medicinal materials. It is an indispensable and important part of the production process and quality formation of CMM [1]. In the process of sweating, long-term stacking causes internal heat production, resulting in biomass and energy exchange, and the internal water of the medicinal materials is redistributed so that the drying speed is accelerated [4]. Other studies have shown that intestinal bacteria convert many of the glycosides, flavonoids, and coumarins contained in TCM into therapeutically useful compounds [9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call