Abstract

In tropical ultramafic soils, potassium (K) is typically the most growth limiting nutrient. However, tropical nickel (Ni) hyperaccumulator plants, including Phyllanthus rufuschaneyi and Rinorea cf. bengalensis (which are ‘metal crops’ used in agromining) from Malaysia, have unusually high K shoot accumulation compared to other species, despite naturally growing on severely K-impoverished ultramafic soils. This study aimed to establish the response to soil K availability in relation to uptake of K and other elements in the roots and shoots of P. rufuschaneyi and R. cf. bengalensis. We undertook an experiment in which soluble K was dosed to ultramafic soil in pots with P. rufuschaneyi and R. cf. bengalensis in Sabah (Malaysia). The results show that root K concentrations increased markedly as the soil K availability increased by 35-fold, whilst the corresponding effect on K accumulation in the shoots of P. rufuschaneyi and R. cf. bengalensis was not significantly different in relation to soil K dosing. Observed divergent responses between root and shoot K accumulation in these species suggests a separate genetic control of K uptake and xylem loading in P. rufuschaneyi and R. cf. bengalensis. The tight control of root-to-shoot K translocation and constrained K accumulation in shoots under a soil K gradient is likely an adaptive mechanism to the evolution of these species to grow in highly nutrient-impoverished ultramafic soils. This study provides information that will be useful for better nutrient management of tropical Ni metal farms that use K-efficient Ni ‘metal crops’.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call