Abstract

The availability of viable seeds in soil helps to determine the success of ecological restoration in disturbed habitats. Although seed survival in soil generally increases with an increase in burial depth, whether the effects of burial on seed survival are comparable across different sites is unclear. In this study, I tested the hypothesis that the positive effects of burial on seed survival decrease as vegetation develops through succession. Four wetland species, Drosera rotundifolia, Lobelia sessilifolia, Rhynchospora alba and Moliniopsis japonica, were used for the study. The four species differ in their light requirement for germination; i.e., D. rotundifolia, L. sessilifolia and R. alba germinate best in light, whereas M. japonica germinates equally well in light and darkness. The seeds of these species were buried for two years at three depths (litter, 0 and 4 cm) in three successional stages with different amounts of vegetation and litter in a post-mined peatland. The photosynthetically active radiation (PAR) and temperature at each of litter layer, 0 cm and 4 cm depths were measured for each successional stage. The between-depth differences in PAR and temperature fluctuations decreased as succession progressed. For the three light-demanding species, burial promoted seed survival more in the initial successional stage than in the later successional stages, whereas for M. japonica, burial promoted seed survival equally in all successional stages. This study revealed significant variation in the effects of burial on seed survival, particularly for light-sensitive seeds, and that the soil surface layers in vegetated sites can contain persistent seeds, which could be used as a seed source in restoration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call