Abstract

The first geological materials impacted by oil field wastes released into near-surface environments in southern Louisiana, USA, are typically clays and silts. Clay minerals within these siliciclastic sediments have the potential for altering the composition of produced water wastes through cation exchange. The general relations between the composition of adsorbed cations and interstitial water salinity in brine-contaminated samples from a site in southeastern Louisiana are consistent with previous studies of multicomponent exchange in groundwater systems of varying salinity. The divalent cations Ca and Mg dominate as adsorbed cations at low salinities (<1200 mg/L), but Na is dominant at moderate to high salinities (up to 53,000 mg/L). The change in the proportions of adsorbed cations is a non-linear function of salinity, and the transition from Ca-dominated adsorption to Na-dominated adsorption occurs over a narrow range of salinities. Calculated interstitial water compositions, assuming exchange equilibrium, are consistent with the source of contamination being produced waters having Na as the dominant dissolved cation, followed by Ca, rather than some other type of saline waste. The calculated partitioning for Ba indicates that in low to moderate salinity pore waters, Ba, and by extension Ra, are nearly quantitatively adsorbed on the clays and would be of low mobility in a physically active groundwater system. However, at the elevated salinities typical of many produced waters, Ba and Ra are not preferentially adsorbed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.