Abstract

Amorphous transparent conducting oxides (a-TCOs) have seen substantial interest in recent years due to the significant benefits that they can bring to transparent electronic devices. One such material of promise is amorphous ZnxSn1-xOy (a-ZTO). a-ZTO possesses many attractive properties for a TCO such as high transparency in the visible range, tunable charge carrier concentration, electron mobility, and only being composed of common and abundant elements. In this work, we employ a combination of UV-vis spectrophotometry, X-ray photoemission spectroscopy, and in situ scanning tunneling spectroscopy to investigate a 0.33 eV blue shift in the optical bandgap of a-ZTO, which we conclude to be due to quantum confinement effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.