Abstract

Microrefuges provide microclimates decoupled from inhospitable regional climate regimes that enable range‐peripheral populations to persist and are important to cold‐adapted species in an era of accelerated climate change. However, identifying and describing the thermal characteristics of microrefuge habitats is challenging, particularly for mobile organisms in cryptic, patchy habitats. We examined variation in subsurface thermal conditions of microrefuge habitats among different rock substrate types used by the American pika (Ochotona princeps), a climate‐sensitive, rock‐dwelling Lagomorph. We compared subsurface temperatures in talus and lava substrates in pika survey sites in two US national park units; one park study area on the range periphery and the other in the range core. We deployed paired sensors to examine within‐site temperature variation. We hypothesized that subsurface temperatures within occupied sites and structurally complex substrates would be cooler in summer and warmer in winter than unoccupied and less complex sites. Although within‐site variability was high, with correlations between paired sensors as low as 47%, we found compelling evidence that pikas occupy microrefuge habitats where subsurface conditions provide more thermal stability than in unoccupied microhabitats. The percentage of days in which microhabitat temperatures were between −2.5 and 25.5°C was significantly higher in occupied sites. Interestingly, thermal conditions were substantially more stable (p < .05) in the lava substrate type identified to be preferentially used by pikas (pahoehoe vs. a'a) in a previous study. Our study and others suggest that thermal stability appears to be the defining characteristic of subsurface microrefuges used by American pikas and is a likely explanation for enigmatic population persistence at the range periphery. Our study exemplifies an integrated approach for studying complex microhabitat conditions, paired with site use surveys and contextualized with information about gene flow provided by complementary studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.