Abstract

BackgroundTemporomandibular joint disorder (TMD) is a common oral and maxillary facial disease. Finite element method (FEM) has been widely used in TMD studies. Material assignment significantly affects FEM results. The differences in the methods of material assignment used in previous studies have not been comprehensively assessed for further calculations. MethodsThe mandible material modelling approaches were of four types, namely: uniform modelling with (A) cortical bone; and (B) cancellous bone; (C) semi-uniform modelling with division of cortical and cancellous bone; and (D) non-uniform modelling with Computed tomography (CT) gray value related modulus. Meanwhile, the Young's modulus of values ranging from 20 to 300 GPa were considered for the teeth. Ten modellings were used to analyze and discuss the differences in contact pressure and contact force. Results(1) The increase in teeth elastic modulus increased the maximum contact pressure on the alveolar bone and contact force on teeth, but induced insignificant stress variation on the temporomandibular joint; (2) The location of the maximum contact pressure was steady for all four modelling approaches of the mandibular material. However, the maximum contact pressure and contact force exhibited an insignificant difference. ConclusionsTeeth with a higher elastic modulus significantly enhanced the stress concentration in the alveolar bone; in contrast, it induced minor variations in the temporomandibular joint stress states. The extreme stress regions predicted by the four mandibular models were consistent with the actual damaged regions. However, non-uniform modellings based on CT values could better describe the mechanical properties of the human bone, which should be primarily considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.