Abstract

Although amphibian sex determination is genetic, it can be manipulated by exogenous hormone exposure during sexual differentiation. The timing of sexual differentiation varies among anuran amphibians such that species may or may not be a tadpole during this period, and therefore, may or may not be exposed to aquatic contaminants. Estrogenic contamination is present in amphibian habitats worldwide. We examined three species with varying somatic and ovarian developmental rates to assess their susceptibility to estrogenic contaminants. American toads (Bufo americanus), gray treefrogs (Hyla versicolor), and Southern leopard frogs (Ranasphenocephala) were exposed as larvae to 17-β-estradiol (10−7M), three concentrations of a widespread herbicide (1, 3, 30ppb atrazine), or a solvent control (ethanol). Somatic and ovarian developmental stages as well as time to metamorphosis were recorded. Toads and treefrogs were examined at three weeks and metamorphosis, while leopard frogs were examined at three, six, and nine weeks as well as at metamorphosis. Our results demonstrate that each species displays heterochronic somatic and ovarian development. Further, the more rapid of the two rates determines the susceptibility to estrogenic contaminants. These results suggests that amphibians with shorter larval periods, and therefore quicker somatic developmental rates (i.e. American toads, gray treefrogs), are more susceptible to somatic treatment effects (i.e. prolonged time to metamorphosis) due to estrogenic contaminants. Moreover, the results suggest that amphibians with relatively rapid ovarian development (i.e. Southern leopard frogs) are more susceptible to gonadal treatment effects caused by estrogenic contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call