Abstract

Soil microorganisms are an integral part of the soil and are highly sensitive to environmental changes. The shift in plant community and soil properties following forest succession may cause differences in soil bacterial and fungal community composition. Some studies suggested following the succession of the community, the species composition tends to switch from r-strategy groups to k-strategy groups. However, generalization on the changing pattern has not been worked out. Three forests at an early-, intermediate-, and late-stage (ES, IS, LS) of the succession of broad-leaved Korean pine forest in the Lesser Hinggan Mountains were surveyed to study the variation in soil bacterial and fungal community composition as the succession proceeds. Soil microbial community composition and related soil factors were analyzed by systematic sampling. Significant differences in soil microbial community composition were detected between forests at different stages. The bacterial diversity increased, while the fungal diversity decreased (p < 0.05) from the early to the late successional forest. The fungi to bacteria ratio (F/B) and the (Proteobacteria + Bacteroidetes) to (Actinobacteria + Acidobacteria) ratio increased substantially with succession (p < 0.05). At the phylum level, Bacteroidetes, Ascomycota and Mortierellomycota were dominant in the ES forest, while Actinobacteria and Basidiomycota were prevalent in the LS forest. At the class level, Gammaproteobacteria, Acidobacteriia, Bacteroidia, Sordariomycetes and Mortierellomycetes were dominant in the ES forest, whereas Subgroup_6, Agaricomycetes, Geminibasidiomycetes and Tremellomycetes were dominant in the LS forest. Soil water content (SWC) and available phosphorus (AP) had significant effects on the bacterial community composition (p < 0.05). Soil organic carbon (SOC), total nitrogen (TN), the carbon–nitrogen ratio (C/N), total potassium (TK) and SWC had significant effects on the fungal community composition (p < 0.05). SOC and TN were positively correlated with r-strategy groups (p < 0.05) and were significantly negatively correlated with k-strategy groups (p < 0.05). Our results suggest that the soil bacterial and fungal community composition changed significantly in forests across the successional stages, and the species composition switched from r-strategy to k-strategy groups. The bacterial and fungal community diversity variation differed in forests across the successional stages. The changes in soil organic carbon and nitrogen content resulted in the shifting of microbial species with different ecological strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call