Abstract

Plasmodium parasites, the cause of malaria, have a complex life cycle, infecting alternatively vertebrate hosts and female Anopheles mosquitoes and undergoing intra- and extra-cellular development in several organs of these hosts. Most of the ~5000 protein-coding genes present in Plasmodium genomes are only expressed at specific life stages, and different genes might therefore be subject to different selective pressures depending on the biological activity of the parasite and its microenvironment at this point in development. Here, we estimate the selective constraints on the protein-coding sequences of all annotated genes of rodent and primate Plasmodium parasites and, using data from scRNA-seq experiments spanning many developmental stages, analyze their variation with regard to when these genes are expressed in the parasite life cycle. Our study reveals extensive variation in selective constraints throughout the parasites' development and highlights stages that are evolving more rapidly than others. These findings provide novel insights into the biology of these parasites and could provide important information to develop better treatment strategies or vaccines against these medically-important organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call