Abstract

Disentangling how variation in reproduction and growth is linked in plants across different ecological scales, and how allocation rules change in response to stress are fundamental aspects of life history theory. Although it is known that reproductive allocation is an allometric process and that environmental conditions can influence demographic traits, patterns of variation in vegetative and reproductive functions across and within individuals of tree species suffering drought-induced decline have rarely been documented. In this study we use Scots pine (Pinus sylvestris L.) as a model species to explore patterns of variation in cone production and growth in two declining populations at the southern edge of its distribution. A Bayesian approach was used to assess how these demographic traits vary as a function of drought effects and competition and covary across different ecological scales. The allometric trajectories relating tree size with cone production and growth differed along gradients of drought impacts and biotic interactions. Although reproduction and growth increased with tree size, cone production reached a maximum at intermediate sized trees and stabilized or decreased at larger sizes. Drought stress effects (defoliation at the tree level and overall decline at the plot level) and competition for resources reduced cone production and growth. Our results also showed differential effects of defoliation on cone production depending on tree size, with stronger effects on larger individuals. After accounting for these effects, much of the variation of demographic traits and correlations among them occurred at small ecological scales across individuals (i.e. within plots) and within individuals across years. This resulted in covariations between demographic traits among nearby individuals and within individuals through time, suggesting a consistent advantage in resource acquisition of some individuals within plots, and trade-offs between growth and cone production within trees across years. In conclusion, this study reports that drought-induced forest decline is associated with lower growth and cone production in Scots pine, which could contribute to explain the long-term impacts of drought in southern populations of this species and, in particular, its low regeneration capacity after severe drought.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call