Abstract
The mean volume of pollen grains and total pollen production varied both within and among plants of Erythronium grandiflorum. The second flowers of two-flowered plants tended to produce smaller and fewer grains than first flowers, but there was no overall relationship between mean pollen grain size and production per flower. I evaluated the effects of pollen size differences within and among plants on two components of male reproductive success: pollen tube growth and postfertilization siring ability. Pollen tubes grown in media were longer for second flowers, but were not correlated with the mean size of pollen grains, suggesting that (1) internal resource content of pollen (i.e., carbohydrates plus lipids) was not associated with the hydrated size of pollen, and that (2) pollen from second flowers contained more resources. I analyzed the growth rate and the fertilization ability of pollen growing in styles. Growth rate differed among donors and recipients, but no effects of pollen or donor characters (i.e., pollen production, grain size, and flower position) were detected. In single donor pollinations, pollen size was negatively correlated with fertilization ability across donors, and positively correlated with postfertilization siring ability of donors. A second experiment used pairs of donors; within-plant differences in pollen size and flower position had effects similar to the single donor experiment on fertilization ability, but among-plant differences were not significant. The results corroborate earlier experiments that suggest that the growth of pollen tubes in the style is probably controlled by the recipient, since donor characters had minimal effects on pollen fertilization ability. Postfertilization siring ability was not affected by within-plant differences in mean grain size and production. For among-donor differences, the number of seeds set for each donor was positively correlated with the mean grain volume, and when a donor producing large pollen fertilized ovules in an ovary, there was increased seed abortion for seeds in the same ovary sired by a second donor. In addition, the total number of seeds produced by a fruit was decreased when both donors had large pollen, apparently due to increased postfertilization abortion. Postfertilization processes appear to be influenced by paternal differences that are expressed through competition among developing seeds for maternal resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Evolution; international journal of organic evolution
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.