Abstract

AbstractPlasmaspheric hiss waves are commonly observed in the inner magnetosphere. These waves efficiently scatter electrons, facilitating their precipitation into the atmosphere. Predictive inner magnetosphere simulations often model hiss waves using parameterized empirical maps of observed hiss power. These maps nearly always include parameterization by magnetic L value. In this work, data from the Van Allen Probes are used to compare variation in hiss wave power with variation in both L value and cold plasma density. It is found that for L> 2.5, plasmaspheric hiss wave power increases with plasma density. For L> 3, this increase is stronger and occurs regardless of L value and for all local times. This result suggests that the current paradigm for parameterizing hiss wave power in many magnetospheric simulations may need to be revisited and that a new parameterization in terms of plasma density rather than L value should be explored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.