Abstract

The objective of this study was to determine the extent of variation in, and relationships among, biochemical and palatability traits within and among 11 major beef muscles. Longissimus thoracis et lumborum (LD), psoas major (PM), gluteus medius (GM), semimembranosus (SM), adductor (AD), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), triceps brachii (TB), infraspinatus (IS), and supraspinatus (SS) from one side of 31 Charolais × MARC III steer carcasses were vacuum-packaged, stored at 2°C until 14 d postmortem, and then frozen at −30°C. The 2.54-cm-thick steaks were obtained from two or three locations within muscles in order to assess biochemical traits and Warner-Bratzler shear force, and from near the center for sensory trait evaluation. The PM was most tender and was followed by IS in both shear force and tenderness rating (P < 0.05). The other muscles were not ranked the same by shear force and tenderness rating. The BF had the lowest (P < 0.05) tenderness rating. The PM, GM, and LD had lower (P < 0.05) collagen concentration (2.7 to 4.5 mg/g muscle) than muscles from the chuck and round (5.9 to 9.0 mg/g), except for the AD (4.9 mg/g). Desmin proteolysis was highest (P < 0.05) for BF and LD (60.7 and 60.1% degraded), and was lowest (P < 0.05) for PM (20.2%). The PM, TB, IS, RF, and ST had relatively long sarcomere lengths (>2.1 μm), whereas the GM had the shortest (P < 0.05) sarcomere length (1.7 μm). Cooking loss was lowest (P < 0.05) for BF (18.7%) and was followed by LD and IS (20.7%); it was highest (P < 0.05) for ST (27.4%). Across all muscles, tenderness rating was highly correlated (r > 0.60) with shear force, connective tissue rating, sarcomere length, and collagen content. Within a muscle, correlations among all traits were generally highest in LD and lowest in AD. Within muscle, location effects were detected (P < 0.05) for shear force (PM, ST, BF, SM, and RF), sarcomere length (PM, ST, BF, LD, SS, IS, SM, and RF), collagen concentration (PM, BF, SS, IS, SM. AD, TB, and RF), desmin degradation (PM, GM, BF, SM, AD, and, RF), and cooking loss (all muscles except SS and AD). There is a large amount of variation within and among muscles for tenderness traits and tenderness-related biochemical traits. These results increase our understanding of the sources of variation in tenderness in different muscles and provide a basis for the development of muscle-specific strategies for improving the quality and value of muscles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call