Abstract

Using optical methods, data on optical constants are obtained for silicon nitride films synthesized by plasma-chemical vapor deposition (PCVD). Models for calculating the permittivity in the model of inhomogeneous phase mixture of silicon and silicon nitride are considered. It is found that the optical-absorption edge (E{sub g}) and the photoluminescence peak shift to longer wavelengths with increasing nitrogen atomic fraction x in sin{sub x} films. When x approaches the value 4/3 characteristic for stoichiometric silicon nitride Si{sub 3}N{sub 4}, a nonlinear sharp increase in E{sub g} is observed. Using Raman scattering, Si-Si bonds are revealed, which confirms the direct formation of silicon clusters during the film deposition. The relation between the composition of nonstoichiometric silicon nitride films, values of permittivity, and the optical-band width is established for light transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.