Abstract

Plant species vary in their growth response to arbuscular mycorrhizal (AM) fungi, with responses ranging from negative to positive. Differences in response to AM fungi may affect competition between plant species, influencing their ability to coexist. We hypothesized that positively responding species, whose growth is stimulated by AM fungi, will experience stronger intraspecific competition and weaker interspecific competition in soil containing AM fungi, while neutrally or negatively responding species should experience weaker intraspecific and stronger interspecific competition. We grew Plantago lanceolata, which responds positively to AM fungi, and Bromus inermis, which responds negatively to AM fungi, in an additive response surface competition experiment that varied the total density and relative frequency of each species. Plants were grown in sterilized background soil that had been inoculated with whole soil biota, which includes AM fungi, or a microbial wash, that contained other soil microbes but no AM fungi, or in sterilized soil that contained no biota. The positively responding P. lanceolata was more strongly limited by intraspecific than interspecific competition when AM fungi were present. By contrast, the presence of AM fungi decreased the strength of intraspecific competition experienced by the negatively responding B. inermis. Because AM fungi are almost always present in soil, strong intraspecific competition in positively responding species would prevent them from outcompeting species that respond neutrally or negatively to AM fungi. The potential for increased intraspecific competition to offset growth benefits of AM fungi could, therefore, be a stabilizing mechanism that promotes coexistence among plant species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.