Abstract

Crown morphology and leaf tissue chemical and biochemical attributes associated with ozone (O3) injury were assessed in the lower, mid- and upper canopy of Jeffrey pine (Pinus jeffreyi Grev. & Balf.) growing in mesic and xeric microsites in Sequoia National Park, California. Microsites were designated mesic or xeric based on topography and bole growth in response to years of above-average precipitation. In mesic microsites, canopy response to O3 was characterized by thinner branches, earlier needle fall, less chlorotic leaf mottling, and lower foliar antioxidant capacity, especially of the aqueous fraction. In xeric microsites, canopy response to O3 was characterized by higher chlorotic leaf mottling, shorter needles, lower needle chlorophyll concentration, and greater foliar antioxidant capacity. Increased leaf chlorotic mottle in xeric microsites was related to drought stress and increased concurrent internal production of highly reactive oxygen species, and not necessarily to stomatal O3 uptake. Within-canopy position also influenced the expression of O3 injury in Jeffrey pine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.