Abstract

Crops can take up and accumulate di-n-butyl phthalate (DBP), an extensively used plasticizer with endocrine disrupting effect, which poses potential risk to human health. Our previous study found the genotype variation in accumulation of DBP by different cultivars of rice (Oryza sativa L.). Nevertheless, the effect of DBP metabolism in vivo on the accumulation variation among different plant cultivars remains unknown. In this study, metabolism variation of DBP by low (Fengyousimiao) and high (Peizataifeng) DBP-accumulating cultivars of rice and the key enzymes involving in DBP metabolism in rice plants were investigated using in vivo exposure of rice plants and in vitro exposure of root crude enzyme extracts. Both mono-n-butyl phthalate (MBP) and phthalic acid (PA) were detected as DBP metabolites in all rice tissues (i.e., roots, stems, leaves) and crude enzyme extracts with MBP predominance. DBP metabolism occurred simultaneously when DBP uptake with the highest metabolism in roots in vivo. Degradation of DBP in root crude enzyme extracts fitted well with the first order kinetics (R2 = 0.49–0.76, P < 0.05). The activity of carboxylesterase (CXE) in root crude enzyme extracts was significantly positively correlated with DBP degradation rates. CXE played an important role in DBP metabolism of rice plants, confirming by the fact that triphenyl phosphate of CXE inhibitor could inhibit DBP metabolism of in vivo and in vitro exposure. This result was further confirmed by in vitro degradation of DBP with the commercial pure CXE. The crude enzyme solution from roots of Fengyousimiao with higher CXE activity had significantly higher DBP degradation rates than that of Peizataifeng. However, Fengyousimiao with lower tolerance to DBP stress and higher inhibition by triphenyl phosphate displayed lower DBP metabolism ability in vivo than Peizataifeng.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call